
LL Parsing Example
Martha Kosa

A parser is a critical part of a compiler for a programming language. Parsing must be
done efficiently. The parser must be able to determine quickly the applicable production
rule or if no production rule is applicable at all (which means the program is not
grammatically correct). It is simpler if the leftmost nonterminal symbol is replaced at
each step in the parse. How can we determine which production rule to apply? We need
some terminal lookahead symbols. In an LL(1) grammar, only one lookahead symbol is
needed. The production rules can be stored in a parse table with rows corresponding to
the current nonterminal symbol and columns corresponding to the current input symbol.
Each entry of the parse table contains at most one rule; accessing an empty entry in the
table indicates an error situation. Using the production rules, the FIRST and FOLLOW
sets are computed to fill this table. The applicable lookahead symbols are in the FIRST
set for the current nonterminal symbol. If a lambda rule is applied, the applicable
lookahead symbols are in the FOLLOW set for the current nonterminal symbol. $ is a
special terminal symbol to mark the end of the input string. A stack is used to keep track
of the current sentential form, one symbol at a time. If the top of the stack is a terminal
symbol and the current input symbol does not match it, an error is detected. If no error is
detected, the stack is popped, and the current input symbol is consumed. If the top of the
stack is a nonterminal symbol and no production rule appears in the parse table entry
corresponding to that top of the stack as the row identifier and the current input symbol as
the column identifier, an error is detected. If no error is detected, the stack is popped, and
the reverse of the righthand side of the corresponding production rule is pushed on the
stack, one symbol at a time. The righthand side is reversed because of the LIFO property
of the stack. If the entire input string has been consumed and the stack is empty, the
string is accepted. Otherwise, the string is rejected.

A grammar for a typical complex programming language such as C++ or Java has
hundreds of rules. Our example will be a smaller one. Let us consider a language with
an arbitrary number of simple assignment statements, separated by semicolons. We will
assume that our assignment statements begin with the keyword int, followed by a
variable name (for simplicity, assume variable names begin with an arbitrary number of
a's and/or b's followed by a c), followed by an equals sign, and finally followed by a
number (for simplicity, assume our possible digits are 0, 1, and 2).

For your convenience, this grammar has been created for you.

Try It!
1. Open the grammar file SimpleDeclarationAndAssignment.CFG.flap.
2. Select Input > Build LL(1) Parse Table. You should see a window similar to the

following.

1. Fill in the values for the FIRST sets for each of the nonterminal symbols. If the

nonterminal symbol appears as the lefthand side of a lambda rule, lambda will be
in its first set. Do not type any commas! You can check your work as you go
along by clicking the Next button after you fill in a set. If you have already
practiced a lot with FIRST sets, you can click the Do Step button.

2. Fill in the values for the FOLLOW sets for each of the nonterminal symbols. Do
not type any commas! Don't forget about the $! You can check your work in the
same way as you did previously.

3. Fill in the entries in the parse table. Enter only the righthand sides of the
production rules!

4. You can check your work in the same way as you did previously. Your window
should look like the following.

1. Click the Parse button. Resize the window and/or subwindows if necessary to
see the entire parse table. Your window should look similar to the following.

1. intc=0; is one of the shortest valid strings. How many other valid strings are the
same length? What are those strings? Enter intc=0; in the input box, and then
click the Start button. Your window should look similar to the following.

1. Click the Step button. Your window should look similar to the following (after
resizing if necessary).

1. Click on the one applicable righthand side from the parse table. What row and
column are you using? Click the Step button the correct number of times to put
the entire righthand side on the stack. The top of the stack is the leftmost symbol.

2. Keep selecting the one applicable righthand side from the parse table and clicking
the Step button until a terminal symbol is on top of the stack. Resize the window
to see the current parse tree. Your window should look similar to the following.

1. Click the Step button until a nonterminal symbol is on top of the stack.
2. Click on the one appropriate righthand side from the parse table and click the

Step button until the entire righthand side has been pushed on the stack.
3. Repeat the previous two steps until S is on top of the stack.
4. Click on the one appropriate righthand side from the parse table and click the

Step button twice. What does the stack have on it now?
5. Click the Step button. Your window should look similar to the following.

1. You have successfully parsed a string. Select Derivation Table from the combo
box to see all the rules applied with the corresponding sentential forms. Your
window should look similar to the following.

Now let's see what happens when we attempt to parse an invalid string. All variable
names in the language corresponding to our grammar must end with a c. What happens if
we forget that?

Try It!
1. If it is not already open, open the file

SimpleDeclarationAndAssignment.CFG.flap.
2. If the LL(1) parse table is not already built, build it as before. You can click the

Do All! button and then the Parse button to save time.
3. Enter intab=0; in the input box, and then click the Start button.
4. As you did in the previous section, when a nonterminal symbol is on top of the

stack, click on the appropriate righthand side and then click on the Step button
enough times to push the entire righthand side on the stack. When a terminal
symbol is on top of the stack, click on the Step button enough times to match
terminal symbols until a nonterminal symbol is on top of the stack. You will be
able to apply 5 production rules before you get stuck. As ou click, notice the
output label at the very bottom of your window. Your window should look similar
to the following (with possible resizing).

1. What is in the parse table entry with row corresponding to the top stack symbol
and column corresponding to the current input symbol? Click the parse table
entry, and then the Step button. Your window should look similar to the
following.

1. Click on the Step button. You should get the error message String rejected. at
the bottom of your window.

The parser stops when the first error is detected. For more practice, attempt to parse
some other invalid strings, such as strings without int, strings without semicolons
separating assignments, etc.

